DNA binding domains in diverse nuclear receptors function as nuclear export signals

نویسندگان

  • Ben E. Black
  • James M. Holaska
  • Fraydoon Rastinejad
  • Bryce M. Paschal
چکیده

BACKGROUND The nuclear receptor superfamily of transcription factors directs gene expression through DNA sequence-specific interactions with target genes. Nuclear import of these receptors involves recognition of a nuclear localization signal (NLS) by importins, which mediate translocation into the nucleus. Nuclear receptors lack a leucine-rich nuclear export signal (NES), and export is insensitive to leptomycin B, indicating that nuclear export is not mediated by Crm1. RESULTS We set out to define the NES in the glucocorticoid receptor (GR) and to characterize the export pathway. We found that the 69 amino acid DNA binding domain (DBD) of GR, which is unrelated to any known NES, is necessary and sufficient for export. Mutational analysis revealed that a 15 amino acid sequence between the two zinc binding loops in the GR-DBD confers nuclear export to a GFP reporter protein, and alanine-scanning mutagenesis was used to identify the residues within this sequence that are critical for export. The DBD is highly related (41%-88% identity) in steroid, nonsteroid, and orphan nuclear receptors, and we found that the DBDs from ten different nuclear receptors all function as export signals. DBD-dependent nuclear export is saturable, and prolonged nuclear localization of the GR increases its transcriptional activity. CONCLUSIONS Multiple members of the nuclear receptor superfamily use a common pathway to exit the nucleus. We propose that NLS-mediated import and DBD-mediated export define a shuttling cycle that integrates the compartmentalization and activity of nuclear receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel

Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...

متن کامل

Nuclear export: DNA-binding domains find a surprising partner

Calreticulin, a calcium-binding protein of the endoplasmic reticulum, has been found to function as a nuclear export factor for a large family of nuclear receptors. Atypical nuclear export pathways may thus exist that regulate the compartmentalization and activity of a distinct set of transcription factors.

متن کامل

The BRCA1 Breast Cancer Suppressor: Regulation of Transport, Dynamics, and Function at Multiple Subcellular Locations

Inherited mutations in the BRCA1 gene predispose to a higher risk of breast/ovarian cancer. The BRCA1 tumor suppressor is a 1863 amino acid protein with multiple protein interaction domains that facilitate its roles in regulating DNA repair and maintenance, cell cycle progression, transcription, and cell survival/apoptosis. BRCA1 was first identified as a nuclear phosphoprotein, but has since b...

متن کامل

Calcineurin homologous protein: a multifunctional Ca2+-binding protein family.

The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca(2+)-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca(2+)-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural mo...

متن کامل

Sox10 is an active nucleocytoplasmic shuttle protein, and shuttling is crucial for Sox10-mediated transactivation.

Sox10 belongs to a family of transcription regulators characterized by a DNA-binding domain known as the HMG box. It plays fundamental roles in neural crest development, peripheral gliogenesis, and terminal differentiation of oligodendrocytes. In accord with its function as transcription factor, Sox10 contains two nuclear localization signals and is most frequently detected in the nucleus. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001